säule dividiert, gibt das spezifische Gewicht der letztern. Über die Bestimmung des spezifischen
Gewichts pulverförmiger
Körper s.
Stereometer.
[* 1]
Um das spezifische Gewicht eines
Gases zu bestimmen, wird ein Glasballon von 8-10
Lit.
Inhalt, dessen
Hals mittels einer Messingfassung,
die durch einen
Hahn
[* 2] verschließbar ist, auf die
Luftpumpe
[* 3] geschraubt werden kann, möglichst luftleer
gepumpt und nun gewogen. Alsdann füllt man ihn bei 0° mit dem trocknen
Gas und wägt ihn nochmals. Der Unterschied der beiden
Gewichte ist das
Gewicht des
Gases bei 0° und dem gerade herrschenden Barometerstand und braucht nur durch das zuvor genau
ermittelte
Volumen des
Ballons dividiert zu werden, um das spezifische Gewicht des
Gases für diesen
Druck
zu liefern.
Mit
Hilfe des
MariotteschenGesetzes kann daraus leicht das spezifische Gewicht bei dem Normalbarometerstand von 760
mm gefunden
werden. Überhaupt müssen bei der Bestimmung des spezifischen
Gewichts der
Gase
[* 4]
Temperatur,
Druck und andre Umstände sorgfältige
Berücksichtigung finden. Um die
Korrektion wegen des Gewichtsverlustes, welchen der
Ballon
[* 5] durch die umgebende
atmosphärische
Luft erleidet, zu umgehen, hing
Regnault an den andern Wagebalken einen ganz gleichen Glasballon, dessen äußeres
Volumen dem des ersten vollkommen gleich gemacht war. Da die spezifischen
Gewichte der
Gase, auf
Wasser bezogen, durch sehr kleine
Zahlen ausgedrückt sind, so nimmt man für sie gewöhnlich die
Luft als
Einheit.
Ein sehr sinnreiches
Verfahren zur Bestimmung der spezifischen
Gewichte der
Gase wurde von
Bunsen auf den
Satz gegründet, daß
die Ausströmungsgeschwindigkeit der
Gase den
Quadratwurzeln aus ihren spezifischen
Gewichten umgekehrt proportional sind, oder,
was dasselbe ist, daß ihre spezifischen
Gewichte sich verhalten wie die
Quadrate der Ausströmungszeiten
gleicher Volumina. Das
Gas befindet sich in der Glasröhre
A A
[* 6]
(Fig. 5), die sich
oben in ein Röhrchen B verengert, in welches
bei v ein dünnes Platinplättchen mit einer feinen Öffnung eingeschmolzen ist, aus der nach Wegnahme des Stöpsels s das
Gas ausströmt.
Die
RöhreA A wird, während der Stöpsel aufgesetzt ist, so tief in das
Quecksilber des Standgefäßes C C hinabgedrückt,
daß die
Spitze r des gläsernen
SchwimmersD D genau im
Niveau des
Quecksilbers erscheint. Wird nun der Stöpsel weggenommen,
so beginnt das
Gas auszuströmen, und man braucht nun nur die Zeit zu beobachten, welche von der Wegnahme
des Stöpsels an vergeht, bis die am
Schwimmer angebrachte
Marke t das Quecksilberniveau erreicht hat.
Hat man z. B. auf diese
Weise gefunden, daß gleiche Raumteile von atmosphärischer
Luft und von
Knallgas bez. 117,6 und 75,6Sekunden zum Ausströmen gebrauchen, so ist das spezifische Gewicht des
Knallgases, auf
Luft bezogen, =
75,6²: 117,6² = 0,413.
[* 6]Wärme
[* 7]
(Wärmekapazität), die Wärmemenge, welche 1 kg eines
Körpers bedarf, um sich um
1° C. zu erwärmen.
GleicheMassen verschiedener
Stoffe erfordern für die gleiche Temperaturerhöhung einen sehr ungleichen
Aufwand von
Wärme.
Will man z. B. 1 kg
Wasser und 1 kg
Quecksilber von 0° auf 100° erwärmen, so bemerkt man leicht, daß
bei gleicher Wärmezufuhr das
Quecksilber viel rascher die gewünschte
Temperatur erreicht als das
Wasser.
Ja sogar, wenn man von beiden
Flüssigkeiten je 1
Lit. nimmt, also dem
Gewicht nach 13,6mal soviel
Quecksilber als
Wasser, wird
man bei jenem mit einer Heizflamme das
Ziel schneller erreichen als bei diesem mit zwei ebensolchen
Flammen.
Erkaltet ein warmer
Körper wieder auf seine ursprünglicheTemperatur, so gibt er die Wärmemenge, welche
er vorher zu seiner Erwärmung verbraucht hatte, an seine Umgebung wieder ab; man wird daher, indem man diese Wärmeabgabe
beobachtet, zugleich den zur Erwärmung nötigen Wärmebedarf kennen lernen; alle Verfahrungsarten zur Ermittelung der »spezifischen
Wärme« der
Körper beruhen in der That aus der Bestimmung der beim Erkalten abgegebenen Wärmemenge.
Erwärmen wir drei gleich schwere
Kugeln von
Kupfer,
[* 8]
Zinn und
Blei
[* 9] in siedendem
Wasser auf 100° u. bringen sie rasch auf eine
Wachsscheibe, so fällt die Kupferkugel sehr bald durch das
Loch, das sie aufgeschmolzen hat, die Zinnkugel dringt tief in
die
Scheibe ein, während die Bleikugel nur ganz wenig einsinkt. Es ist hierdurch augenfällig, daß
das
Kupfer die größte Wärmemenge abgegeben hat und demnach unter diesen
Metallen die größte
s. W. besitzt, das
Zinn eine
mittlere, das
Blei die kleinste.
Genaueres über das
Verhältnis der spezifischen
Wärmen dieser
Körper erfahren wir jedoch durch diesen
Versuch nicht; hierzu wäre es notwendig, die abgegebenen Wärmemengen wirklich zu messen, d. h.
in »Wärmeeinheiten« auszudrücken. Als
Einheit der Wärmemenge oder Wärmeeinheit hat man diejenige Wärmemenge festgesetzt,
welche erforderlich ist, um 1 kg
Wasser um 1° C. zu erwärmen, oder, was dasselbe ist, man hat
die s. W. desWasser
= 1 angenommen. Vorrichtungen zur Messung von Wärmemengen nennt man
Kalorimeter. Um
die s. W. eines
Körpers nach dem Schmelzverfahren
zu bestimmen, kann das Eiskalorimeter von
Lavoisier und
Laplace
[* 6]
(Fig. 1) dienen. Dasselbe besteht aus drei sich der
Reihe nach
umhüllenden Blechgefäßen, von denen das innerste c siebartig durchlöchert ist oder auch nur aus einem
Drahtkorb besteht. Der Zwischenraum
a a zwischen dem äußersten und mittlern
Gefäß
[* 10] sowie der hohle Deckel des letztern